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INTRODUCTIONThe su

ess of intensity-modulated radiation therapy (IMRT) or 4-D 
onformal radiationtherapy (CRT) is heavily reliant on a

urate image-guidan
e in prostate 
an
er treatment.Cone-beam CT (CBCT) image a
quisition is be
oming one of the dominant imaging modal-ities, and the a

ura
y of the images by CBCT and the radiation dose due to CBCT are
onsidered as very important issues [1,2℄. Most s
anning geometries of the CBCT used inprostate 
an
er treatment are 
ir
ular traje
tories, whi
h often yield insu�
ient data forexa
t volumetri
 image re
onstru
tion. As a 
onsequense, images re
onstru
ted by approx-imate algorithms, mostly based on the Feldkamp algorithm, would 
ontain image artifa
tssu
h as streaks, intensity drop, and image deformation in regions away from the traje
toryplane [3℄. Radiation dose to the prostate 
an
er patient due to CBCT must be 
arefullystudied and imaging s
hemes that 
an lead to minimum (or optimum if interplay betweenimaging and therapeuti
 dose 
onformity is 
onsidered) dose should be devised. This is ofparamount importan
e espe
ially in repeated s
ans during the treatment pro
ess to adapttreatment plans to 
hanges in prostate over time. The overall obje
tive of this proje
t is toinvestigate and develop innovative CBCT s
anning methods and 
orresponding image re
on-stru
tion algorithms that 
an in
rease the a

ura
y of the images of the patient's prostateand/or redu
e patient dose from CBCT. Reverse heli
al CBCT has been developed for exa
tre
onstru
tion of volumetri
 images, region-of-interest (ROI) re
onstru
tion methods havebeen explored to redu
e patient dose, and a few-view CBCT approa
h has been proposed forenormous redu
tion of patient dose. This report summarizes the progress of this Predo
toralTraineeship Award proje
t made by the re
ipient during the past one year.
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BODY1 Training A

omplishmentsAt the time of this report, the re
ipient, Seungryong Cho, of the Predo
toral TraineeshipAward has taken 22 out of 22 required 
ourses towards his Ph.D. degree in medi
al physi
s.The 
ourses in
lude physi
s of medi
al imaging, physi
s of radiation therapy, mathemati
s formedi
al physi
ists, image guided radiation therapy, statisti
s, anatomy of the body, radiationbiology and tea
hing assistantship.2 Resear
h A

omplishments2.1 Investigation of re
onstru
tion algorithms for reverse heli
al CBCTHeli
al s
anning 
on�guration has been used widely in diagnosti
 CBCT for a
quiring datasu�
ient for exa
t image re
onstru
tion over an extended volume. In image-guided radia-tion therapy (IGRT) and other appli
ations of CBCT, it is di�
ult, if not impossible, toimplement me
hani
ally a multiple-turn heli
al traje
tory on the imaging systems due tohardware 
onstraints. However, imaging systems in these appli
ations often allow for theimplementation of a reverse heli
al traje
tory in whi
h the rotation dire
tion 
hanges be-tween two turns. Be
ause the reverse heli
al traje
tory satis�es Tuy's 
ondition, it yieldsdata su�
ient for exa
t image re
onstru
tion within the reverse helix volume. The re
entlydeveloped 
hord-based algorithms su
h as the ba
kproje
tion �ltration (BPF) algorithm 
anreadily be applied to re
onstru
ting images on 
hords of a reverse heli
al traje
tory, andthey 
an thus re
onstru
t an image within a volume 
overed by the 
hords. Conversely, the
hord-based algorithms 
annot re
onstru
t images within regions that are not interse
ted by
hords.In a reverse helix volume, we have shown that 
hordless regions exist in whi
h no im-ages 
an thus be re
onstru
ted by use of the 
hord-based algorithms. Therefore, we havere
ently developed a shift-invariant �ltered ba
kproje
tion (FBP) algorithm for exa
t imagere
onstru
tion within the reverse helix volume, in
luding the 
hordless region. Results ofthe numeri
al studies 
on�rm that the proposed FBP algorithm 
an exa
tly re
onstru
t animage within the entire reverse helix volume, in
luding the 
hordless region. It is relativelystraightforward to extend the proposed FBP algorithm to re
onstru
t images for generaltraje
tories, in
luding reverse heli
al traje
tories with variable pit
h, titled axis, and/or ad-ditional line segments between turns. The developed algorithm needs further investigationto handle a long obje
t problem and thus to be applied to a

urate image re
onstru
tion ofprostate, whi
h is left as our future work. A full des
ription of the algorithm is in referen
e[4℄ whi
h is atta
hed as Appendix A.2.2 Investigation of ROI image re
onstru
tion in 
ir
ular CBCTAs an attempt to redu
e patient dose, s
anning time, and s
atter to the dete
tor , andalso to in
rease the spatial resolution of the images from 
ir
ular 
one-beam data, we haveinvestigated algorithms for ROI image re
onstru
tion. A ba
kproje
tion-�ltration (BPF)algorithm based on PI-line 
on
ept has been developed to re
onstru
t ROI images from
2 5



trun
ated data set whi
h 
ontains only the proje
tions of the ROI. Sin
e a mi
roCT systemwith a �at-panel dete
tor shares the physi
s and s
anning geometry of image a
quisitionwith a CBCT system used in IGRT, we have built a prototype mi
roCT that provides ahands-on experiment for validating new algorithms.Using the mi
roCT system, we have validated that the proposed BPF algorithm 
anre
onstru
t ROI images without any trun
ation artifa
ts whi
h, in 
ontrast, would exist inthe images re
onstru
ted by 
onventional algorithms. In mi
roCT and also in CBCT of IGRTsystems, be
ause the dete
tor size is limited, the use of a large geometri
 magni�
ation 
anlead to trun
ated 
one-beam data. Motivated by our results of ROI imaging, we proposed toexploit the unique 
apability of the BPF algorithm for a

urate ROI image re
onstru
tionfrom trun
ated data to improve spatial resolution of the ROI images of a mouse leg bearingosteosar
oma. The in
reased spatial resolution of the ROI images has been su

essfullydemonstrated. Detailed work 
an be found in referen
e [5℄ whi
h is also atta
hed as AppendixB. In most IGRT pro
edures, it is desirable to have a

urate image of the target while spar-ing patient dose spe
i�
ally to the normal tissue outside the target. This issue be
omes moreimportant in prostate 
an
er where there are radiation sensitive tissues near the treatmenttarget su
h as re
tum. Unfortunately, the ROI re
onstru
tible by the 
hord-based algorithms
annot be ex
lusively the target in general. The ROI usually 
ontains more than the targetin
luding those organs sensitive to the radiation. In this regard, we proposed an innova-tive, intensity-weighted ROI imaging te
hnique to lower patient dose to the normal tissuesurrounding the target and at the same time to preserve the image quality of the target inthe ROI. The ROI in this task is divided into two subROI's. Higher dose is delivered to theinner ROI 
ontaining the target, and lower dose is to the outer ROI. Ea
h proje
tion image,therefore, will have di�erent noise levels in two regions: inner ROI proje
tion and outer ROIproje
tion. This work is based on the observation that the noise from the outer ROI doesnot signi�
antly propagate into the inner ROI due to noise transfer property of the Hilberttransform. The preliminary study has been submitted to SPIE Medi
al Imaging Conferen
e,2008 [6℄. The abstra
t is atta
hed as Appendix C.2.3 Investigation of few-view CBCT for IGRTThe re
ently available kV 
one-beam imaging 
apability of a linear a

elerator system pro-vides ex
ellent soft-tissue 
ontrast, whi
h is an important bene�t in IGRT of su
h as prostate
an
er. Redu
tion of the treatment margins owing to improved image quality of the targetwould in
rease the 
onformality of dose distribution in a fra
tionated treatment where day-to-day, interfra
tion organ motion is present. However, radiation dose a

umulated to thepatient due to daily CBCT before ea
h fra
tionated treatment may pose a 
hallenge in thepatient's radiation safety. This motivated our work to develop a few-view CBCT for IGRT,where few-view means a limited number of proje
tion views out of 360
◦ in a 
ir
ular s
an.Re
ently, we have developed an iterative image re
onstru
tion algorithm based on total-variation (TV) minimization from in
omplete 
one-beam proje
tion data [7℄. In numeri
alstudies with a variety of in
omplete 
one-beam data sets in
luding trun
ated data, redu
eds
an range, and sparse sampling, the developed algorithm, whi
h is referred to as TV algo-rithm hereafter, showed an ex
ellent performan
e 
ompared with existing algorithms su
has algebrai
 re
onstru
tion te
hnique (ART) and expe
tation maximization (EM). The TV
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algorithm begins in general with a uniform image as an initial guess, and goes through it-eration steps to minimize the image TV. In an IGRT of prostate 
an
er, a patient usuallyundergoes a CT s
anning for treatment planning, whi
h 
an provide the referen
e image forimage-guidan
e pro
edure. Therefore, we proposed a TV algorithm with a priori informa-tion in few-view CBCT for IGRT. We expe
t the proposed algorithm 
an redu
e the numberof proje
tions needed for volumetri
 image re
onstru
tion even further than a TV algorithmwithout a priori information does. The number of proje
tions needed in this approa
h wouldbe less than that of 
onventional CBCT by fa
tor of tens. The preliminary study has beensubmitted to SPIE Medi
al Imaging Conferen
e, 2008 [8℄. The abstra
t is also atta
hed asAppendix D.
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KEY RESEARCH ACCOMPLISHMENTS
• We have proposed a novel image a
quisition geometry of reverse helix for CBCT imagersmounted on LINAC treatment systems used for prostate 
an
er IGRT, and developedan exa
t re
onstru
tion algorithm of the volumetri
 images within the reverse helix.
• We have developed a prototype mi
roCT with a �at-panel dete
tor, whi
h has 
ommonphysi
s of image a
quisition with CBCT imagers mounted on LINAC treatment systems,to experimentally validate newly developed algorithms for prostate 
an
er IGRT.
• We have 
ondu
ted an ROI image re
onstru
tion of a mouse having osteosar
oma onone leg. A larger geometri
 magni�
ation has been attempted to in
rease the spatial res-olution of the ROI image, and the developed BPF algorithm su

essfully re
onstru
tedthe ROI image without trun
ation artifa
ts. This strategy 
an be applied to prostate
an
er IGRT with redu
ed imaging dose.
• We have proposed and 
ondu
ted a preliminary investigation of the intensity-weightedROI imaging for CBCT in prostate 
an
er IGRT. The proposed method 
an bring inuseful out
omes in terms of dose management and image-guidan
e.
• We have performed a preliminary, numeri
al study of few-view CBCT for prostate
an
er IGRT based on TV algorithm with a priori information. The su

ess of theproposed method would redu
e the patient dose due to prostate 
an
er imaging byfa
tor of tens.
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REPORTABLE OUTCOMESPeer-reviewed Journal Arti
les1. S. Cho, J. Bian, C. A. Pelizzari, C. -T. Chen, T. -C. He, and X. Pan: Region of interestimage re
onstru
tion in 
ir
ular 
one-beam mi
roCT, Med. Phys., 34, pp.4923-4933,2007.2. S. Cho, D. Xia, C. A. Pelizzari, and X. Pan: Exa
t re
onstru
tion of volumetri
 imagesin reverse heli
al 
one-beam CT, Med. Phys., (submitted), 2007.3. S. Cho, E. Y. Sidky, J. Bian, and X. Pan: Dual-energy 
omputed radiography basedon estimated spe
tral properties of a spe
imen radiographi
 system, Nu
l. Inst. Meth.A,(submitted), 2007.4. D. Xia, S. Cho, and X. Pan: Image re
onstru
tion for a redu
ed s
an in 
ir
ularsinusoidal 
one-beam CT, IEEE Trans. Med. Imag., (submitted), 2007.Conferen
e Pro
eeding Arti
les1. S. Cho, D. Xia, C. A. Pelizzari, and X. Pan: Cone-beam CT with a modi�ed reverseheli
al traje
tory for long obje
t problem , Pro
. MIC, M18-282, 2007.2. D. Xia, S. Cho, and X. Pan: Re
onstru
tibel volume for 
one-beam CT with a redu
edsaddle traje
tory , Pro
. MIC, M04-5, 2007.3. D. Xia, S. Cho, and X. Pan: Image noise properties in 
ir
ular sinusoidal 
one-beamCT , Pro
. MIC, M13-285, 2007.4. S. Cho, D. Xia, C. A. Pelizzari, and X. Pan: Exa
t image re
onstru
tion in reverseheli
al 
one-beam CT , Pro
. Fully 3D Meeting, pp. 84-87, 2007.Conferen
e Presentations and Abstra
ts1. S. Cho, D. Xia, C. A. Pelizzari, and X. Pan: Reverse heli
al 
one-beam CT and itsappli
ations to image-guided radiation therapy , presented at RSNA Annual Meeting,2007.2. S. Cho, D. Xia, C. A. Pelizzari, and X. Pan: Exa
t image re
onstru
tion in reverseheli
al 
one-beam CT for radiation therapy , presented at AAPM Annual Meeting andat AAPM Midwest Chapter Meeting, 2007.3. S. Cho, E. Pearson, D. Xia, C. A. Pelizzari, and X. Pan: Intensity-weighted region-of-interest imaging in 
one-beam CT , a

epted to SPIE Medi
al Imaging Conferen
e,2008.4. S. Cho, E. Y. Sidky, C. A. Pelizzari, and X. Pan: Few-view 
one-beam 
omputedtomography for image-guided radiation therapy , a

epted to SPIE Medi
al ImagingConferen
e, 2008.Honors and Awards
• Student Trainee Award, IEEE Medi
al Imaging Conferen
e, 2007
• Young Investigator Award (2nd pla
e), AAPM Midwest Chapter Meeting, 2007
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CONCLUSIONSThe re
ipient of the Predo
toral Traineeship Award has �nished the required 
oursestowards his Ph.D. degree. These trainings have proven useful for the re
ipient to a
hieve theproposed resear
h goals.During the �rst year, we have investigated innovative approa
hes in 
one-beam CT forIGRT that 
an in
rease the a

ura
y of the re
onstru
ted images and/or redu
e radiationdose to the patient having prostate 
an
er. Reverse heli
al 
one-beam CT has been fullyexplored in the 
ontext of prostate 
an
er IGRT and exa
t image re
onstru
tion algorithmshave been proposed. ROI imaging methods have been proposed and 
orresponding imagere
onstru
tion algorithms have been developed. The te
hnique has been exploited further toprovide intensity-weighted ROI images that 
an redu
e patient dose even further. Few-view
one-beam CT with a priori information has been investigated and preliminary results haveshown that the proposed method 
an potentially de
rease the radiation dose by fa
tor oftens.Overall, we have a
hieved the goals for the �rst year and laid down a solid foundation forthe resear
h in the next two years. Our goals in the next two years in
lude implementation ofreverse heli
al CBCT to the real system, applying di�erent s
anning geometries in CBCT forexa
t image a
quisition, development of intensity-weighted ROI imaging for the real system,and investigation of few-view 
one-beam CT with a priori information in depth; all of thesewill be studied in the 
ontext of appli
ations to prostate 
an
er IGRT.
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Exact Reconstruction of Volumetric Images in
Reverse Helical Cone-beam CT

1,2Seungryong Cho,1Dan Xia,2Charles A. Pelizzari, and1Xiaochuan Pan
1Department of Radiology, University of Chicago, Chicago, IL 60637

2Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637

Abstract

Helical scanning configuration has been used widely in diagnostic cone-beam
computed tomography (CBCT) for acquiring data sufficient for exact image re-
construction over an extended volume. In image-guided radiation therapy (IGRT)
and other applications of CBCT, it is difficult, if not impossible, to implement me-
chanically a multiple-turn helical trajectory on the imaging systems due to hard-
ware constraints. However, imaging systems in these applications often allow for
the implementation of a reverse helical trajectory in which the rotation direction
changes between two turns. Because the reverse helical trajectory satisfies Tuy’s
condition, it yields data sufficient for exact image reconstruction within the re-
verse helix volume. The recently developed chord-based algorithms such as the
backprojection filtration (BPF) algorithm can readily be applied to reconstructing
images on chords of a reverse helical trajectory, and they can thus reconstruct an
image within a volume covered by the chords. Conversely, the chord-based algo-
rithms cannot reconstruct images within regions that are not intersected by chords.
In a reverse helix volume, as shown below, chordless regions exist in which no im-
ages can thus be reconstructed by use of the chord-based algorithms. In this work,
based upon Pack-Noo’s formula, we have developed a shift-invariant filtered back-
projection (FBP) algorithm for exact image reconstruction within the reverse helix
volume, including the chordless region. We have also conducted numerical studies
to demonstrate the chordless region in a reverse helix volume and to validate the
proposed FBP algorithm for image reconstruction within the chordless region. Re-
sults of the numerical studies confirm that the proposed FBP algorithm can exactly
reconstruct an image within the entire reverse helix volume, including the chord-
less region. It is relatively straightforward to extend the proposed FBP algorithm
to reconstruct images for general trajectories, including reverse helical trajectories
with variable pitch, titled axis, and/or additional line segments between turns.

1 Introduction

Computed tomography (CT) is used widely as one of the leading imaging modali-

ties in image-guided radiation therapy (IGRT). In the last few years, cone-beam CT

(CBCT) with a KV-source that is mounted on the rotation gantry of a linear accelerator

1
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(LINAC) treatment system has become commercially available [1, 2, 3]. Integrating

such a KV-CT imaging component into the LINAC system allows the KV-imaging and

MV-treatment processes share identical spatial, and temporal information about the

treated patient. Currently, a KV-CT imaging scanner mounted on LINAC treatment

system acquires cone-beam data by use of a scanning configuration in which the x-ray

source and the detector move along a circular trajectory, largely because the mechanical

implementation of a circular configuration is relatively easy. The FDK algorithm [4]

and its variations have been proposed, and widely used in practice, for reconstructing

approximate images from circular cone-beam data. However, due to data insufficiency,

there may exist cone-beam image artifacts that include intensity drop, streak artifacts,

and image deformation in reconstructed images [5, 6, 7]. The image artifacts would

become more serious when a larger cone-angle is used for acquiring data.

Helical source trajectory has become a standard scanning configuration in diag-

nostic CT because it can collect cone-beam data sufficient for exact reconstruction of

volume images. Diagnostic CT achieves an extended longitudinal coverage by use

of the slip-ring technology, which allows the x-ray source and the detector to rotate

multiple turns continuously in one direction, while the patient couch is translated at

a constant speed along one direction, thus forming a multiple-turn helical source tra-

jectory. The LINAC-mounted KV cone-beam CT, however, can rotate only one turn

in one direction, and it must reverse the rotation direction after each turn, because

the rotation gantry of LINAC treatment system rotates in such a way. Therefore, the

LINAC-mounted KV cone-beam CT imager can achieve only a one-turn helical source

trajectory without altering the couch motion mode. It is expected that certain IGRT

applications based on cone-beam CT images may benefit from an extended volume

coverage of the patient [8]. Therefore, it is desirable to achieve an extended longitudi-

nal coverage beyond that of a one-turn helical trajectory. One natural way to extend the

longitudinal coverage is that the couch is translated continuously along one direction

while the LINAC gantry reverses its rotation direction after each turn, thus resulting in

a multiple-turn reserve helical trajectory.

In this work, we investigate image reconstruction from cone-beam data acquired

with reverse helical trajectories. We first apply the recently developed chord-based

algorithms [9, 10] to reconstructing images because they are directly applicable to any

general continuous trajectories including reverse helical trajectories. A chord is defined

as a line segment connecting any two points on a continuous source trajectory; and

2
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chord-based algorithms reconstruct volume images through reconstructing images on

all of the chords that intersect with the volume. Because any selected volume enclosed

by a conventional helical trajectory used in diagnostic CT is covered completely by

chords [10, 11], chord-based algorithms can reconstruct images within the selected

volume for a conventional helical trajectory.

As will be shown below, however, some portions of the reverse helix volume are

not intersected by any chords, thus forming chordless regions in which images cannot

be reconstructed by use of the chord-based algorithms. Therefore, the main focus of

the work is to develop a new algorithm for exactly reconstructing images within the

entire reverse helix volume. This new algorithm is derived from Pack-Noo’s formula

[12, 13], and thus it is a shift-invariant filtered backprojection (FBP) reconstruction

algorithm. We have first conducted a study to analyze and demonstrate numerically

the chordless region in a reverse helix volume that cannot be reconstructed by use of

the chord-based algorithm. Additional numerical studies were conducted to validate

the proposed FBP algorithm for image reconstruction within the chordless region. Re-

sults of the numerical studies confirm that, unlike the chord-based BPF algorithm that

can yield only an incomplete volume image, the proposed FBP algorithm can exactly

reconstruct an image within the reverse helix volume. It is relatively straightforward

to extend the proposed FBP algorithm to reconstruct images for general trajectories,

including reverse helical trajectories with variable pitch, titled axis, and/or additional

line segments between turns.

2 A Reverse Helical Trajectory

The conventional helical and reverse helical trajectories can be specified by the rotation

angleλ of the source. For comparison, we give below the mathematical expressions

for the two trajectories in the coordinate system that is fixed on the imaged object. For

a conventional helical trajectory~r0(λ), it can be expressed as

~r0(λ) = (R cosλ, R sin λ,
h

2π
λ), λ ∈ [λs, λe], (1)

whereR denotes the distance from the source to the rotation axis,h the helical pitch,

andλs andλe the starting and ending angle of the helical trajectory. In Fig. 1a, we dis-

play a two-turn conventional helical trajectory specified byλ ∈ [λs, λe] = [−2π, 2π].
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In contrast, the reverse helical trajectory~r0(λ) can be written as

~r0(λ) = (R cos((−1)nλ), R sin((−1)nλ),
h

2π
λ), λ ∈ [λs, λe], (2)

where integern indicates thenth turn, and it can be written in terms of a floor function

"⌊ ⌋" as

n = ⌊

λ

2π
⌋ + 1. (3)

Without loss of generality, we have assumed that the turn withn = 0 in the reverse he-

lical trajectory is a turn in the conventional helical trajectory. For example, as shown in

Fig. 1, for a two-turn reverse helical trajectory specified byλ ∈ [λs, λe] = [−2π, 2π],

we have

~r0(λ) = (R cosλ, R sin λ,
h

2π
λ), λ ∈ [−2π, 0)

~r0(λ) = (R cos(−λ), R sin(−λ),
h

2π
λ), λ ∈ [0, 2π]. (4)

Let f(~r) be an object function with a support that is contained completely within

the volume enclosed by a reverse helical trajectory. The cone-beam projection from

the source point~r0(λ) can be written as

g(λ, θ̂) =

∫

∞

0

dtf(~r0(λ) + tθ̂), (5)

whereθ̂ denotes the direction of x-ray transform off(~r) from ~r0(λ). It can be shown

that the reverse helical trajectory satisfies Tuy’s sufficient condition [14], and thus an

exact image can be reconstructed from reverse-helix data. The task of image recon-

struction is to recoverf(~r) from the cone-beam projection data acquired with a reverse

helical trajectory~r0(λ) specified in Eq. (2).

3 Chord-based Algorithm for Reverse Helical Trajec-
tories

In the past several years, algorithms have been developed for image reconstruction

on chords for continuous trajectories [9, 10, 15, 16]. A chord of a continuous tra-

jectory is defined as a line segment connecting any two points on the trajectory. If

a volume is covered completely by chords, the image within the volume can be ob-

tained through reconstructing images on all of the chords by use of the chord-based

4
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Figure 1: A two-turn conventional helical trajectory (a) and atwo-turn reverse helical
trajectory (b) in the coordinate system {x,y,z} that is fixed on the imaged object.

algorithms. Although the chord-based algorithms can have the forms of backprojec-

tion filtration (BPF) [10, 15] and filtered backprojection (FBP) [16], we focus only on

image reconstruction for a reverse helical trajectory by using the chord-based BPF al-

gorithm in this section. Similar results can be obtained by use of the chord-based FBP

algorithms.

3.1 Chord-based BPF algorithm

We consider a chord specified byλ1 andλ2 on a given source trajectory~r0(λ). Let

êc =
~r0(λ2) − ~r0(λ1)

|~r0(λ2) − ~r0(λ1)|
(6)

denote the direction of the chord, as shown in Fig. 2. Also, we usexc to indicate the

coordinate of a point on the chord. It can be shown that the fixed coordinate and the

chord coordinate of the point are related through

~r =
1

2
[~r0(λ1) + ~r0(λ2)] + xcêc, xc ∈ [−l, l], (7)

wherel = 1

2
[~r0(λ2) − ~r0(λ1)] denotes one half of the chord length.

Usingfc(xc, λ1, λ2) to denote the object function on the chord, we have

f(~r) = fc(xc, λ1, λ2), (8)

where~r andxc are related through Eq. (7). Because the compact support of the object

function is enclosed by the trajectory, the support of the object function on a chord is

5
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finite. Without loss of generality, we assume that the object support on the chord is

given byxc ∈ [xs1, xs2]. Considering a segment[xc1, xc2] on the chord that contains

the supportxc ∈ [xs1, xs2], i.e.,[xs1, xs2] ∈ [xc1, xc2], one has

fc(xc, λ1, λ2) = 0 for xc 6∈ [xs1, xs2]. (9)

From cone-beam datag(λ, θ̂), one can compute a backprojection image onto the

chord as

gB(xc, λ1, λ2) =

∫ λ2

λ1

dλ

|~r − ~r0(λ)|

[

∂

∂λ
g(λ, θ̂)

]

θ̂

, (10)

where~r andxc are related through Eq. (7). Based upon the backprojection image

on the chord, the BPF algorithm reconstructs the object functionfc(xc, λ1, λ2) on the

chord as

fc(xc, λ1, λ2) =
1

2π2

1
√

(xc2 − xc)(xc − xc1)

× [

∫ xc2

xc1

dx′

c

xc − x′

c

√

(xc2 − x′

c)(x
′

c − xc1)

× gB(x′

c, λ1, λ2) + C], (11)

wherexc ∈ [xc1, xc2], and the constantC is given by

C = 2π

∫ xc2

xc1

fc(xc, λ1, λ2)dxc = 2πg(λ1, êc). (12)

3.2 Chord-based reconstructible volume

For a reverse helical trajectory, we define a one-turn trajectory segment as the portion

in which the rotation direction of the source remains unchanged. The chords of a

reverse helical trajectory can thus be divided into two classes: chords connecting two

points within a one-turn trajectory segment, and chords connecting two points on two

different one-turn trajectory segments, which we refer to as one-turn and multiple-turn

chords, respectively. For a one-turn chord specified byλ1 andλ2, |λ1 − λ2| ≤ 2π.

Therefore, a one-turn chord of a reverse helical trajectory is equivalent to the PI-line

segment in a conventional helical trajectory. We display in Figs. 3a and 3b one-turn

and multiple-turn chords for a two-turn reverse helical trajectory.

It has been shown that each point enclosed by the conventional helical trajectory

is intersected by at least one chord, and consequently that the volume enclosed can be

6
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Figure 2: Illustration of a chord (thin line segment) specifiedbyλ1 andλ2 for a general,
continuous trajectory. The direction of a point on the chord isêc. The thick line
segment on the chord indicates the support of the object.

covered completely by chords [11]. Therefore, the image within the volume enclosed

by the conventional helical trajectory can be reconstructed through reconstructing im-

ages on chords intersecting with the volume. In a reverse helical trajectory with a finite

number of turns, however, as shown in the appendix, region(s) exist that are not inter-

sected by any chords, and thus image(s) within the region(s) cannot be reconstructed by

use of the chord-based algorithms. For a given reverse helical trajectory, one can deter-

mine the reconstructible volume by use of the chord-based algorithm through comput-

ing the volume covered by the chords. In Fig. 4, we demonstrate the volumes covered

by one-turn chords and multiple-turn chords for a two-turn reverse helical trajectory,

which are the reconstructible volumes by use of the chord-based algorithms. Specifi-

cally, the white regions in Fig. 4 display the reconstructible areas by use of one-turn

chords (a) and multiple-turn chords (b) on the sagittal (top row), coronal (middle row),

and transverse (bottom row), respectively. Clearly, regions that are not covered by

any chords exist for a two-turn reverse helical trajectory; and the use of multiple-turn

chords can increase the reconstructible volume.

4 FBP Algorithm for a Reverse Helical Trajectory

In this section, using Pack-Noo’s formula, we develop an FBP algorithm for image

reconstruction from data acquired with a reversed helical trajectory.

7
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(b)(a)

Figure 3: Illustration of chords (thin line segments) on a two-turn reverse helical tra-
jectory (thick curve): one-turn chords (a), and multiple-turn chords (b).

(a) (b)

Figure 4: Regions (white) covered by one-turn chords (a) and two-turn chords (b)
within slices specified byx = 0 (top row),y = 0 (middle row), andz = 0 (bottom
row), respectively. Therefore, the white regions represent the reconstructible regions
by use of the chord-based algorithms.
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4.1 Pack-Noo’s reconstruction formula

Pack-Noo’s formula provides a basis for deriving FBP algorithms for image recon-

struction for a general source trajectory [12, 17]. For a continuous segment of a

trajectory~r0(λ) that begins and ends atλ− and λ+, we divide it intoN adjacent,

continuous subsegment trajectories of which theith subsegment trajectory begins and

ends atλi andλi+1, wherei = 1, 2, ...N , λ1 = λ−, andλN+1 = λ+. Therefore,

[λ−, λ+] = [λ1, λ2] ∪ [λ2, λ3] ∪ · · ·[λi, λi+1] ∪ · · ·[λN , λN+1]. For each of the sub-

segment trajectories, Pack-Noo’s formula provides a reconstruction as

K(~r, êi, λi, λi+1) = −

1

2π2

∫ λi+1

λi

dλ
1

‖~r − ~r0(λ)‖
gF (λ,~r, êi), (13)

wheregF (λ,~r, êi) represents the filtered backprojection data, given by

gF (λ,~r, êi) =

∫ π

−π

dγ
1

sinγ
∂g(λ, θ̂(λ,~r, êi, γ))

∂λ
, (14)

θ̂(λ,~r, êi, γ) = cosγ α̂(λ,~r) + sinγ β̂(λ,~r, êi),

(15)

β̂(λ,~r, êi) =
êi − (êi · α̂(λ,~r))α̂(λ,~r)

‖êi − (êi · α̂(λ,~r))α̂(λ,~r)‖
, (16)

and

α̂(λ,~r) =
~r − ~r0(λ)

‖~r − ~r0(λ)‖
. (17)

The integration overγ in Eq. (14) indicates a filtering process over the data deriva-

tive, while the filtering direction is determined by a preselected unit vectorêi ∈ S2

for a subsegment trajectory specified by[λi, λi+1]. As discussed below, the specific

form of a derived FBP reconstruction algorithm depends critically upon an appropriate

selection of̂ei ∈ S2.

For a given subsegment trajectory[λi, λi+1] and a selected unit vectorêi, the re-

construction termK(~r, êi, λ
−, λ+), as indicated in Eq. (13), can be computed from

cone-beam projections and can thus be interpreted as the known data function. Let

(R′′f)(ω̂, ~r · ω̂) denote the second order derivative of the 3D Radon transform of

the object functionf(~r). Pack-Noo’s formula [12] establishes a relationship between

K(~r, êi, λ
−, λ+) and(R′′f)(ω̂, ~r · ω̂) as

K(~r, êi, λi, λi+1) = −

1

8π2

∫

S2

dω̂(R′′f)(ω̂, ~r · ω̂)σ(~r, ω̂, êi, λi, λi+1), (18)
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where

σ(~r, ω̂, êi, λi, λi+1) =
1

2
sgn(ω̂ · êi) [sgn(ω̂ · α̂(λi, ~r)) − sgn(ω̂ · α̂(λi, ~r))] , (19)

and "sgn" denotes the signum function. Therefore, for theN continuous subsegment

trajectories covering the entire trajectoryλ ∈ [λ−, λ+], we have

N
∑

i=1

K(~r, êi, λi, λi+1) = −

1

8π2

∫

S2

dω̂(R′′f)(ω̂, ~r · ω̂)σ̄(~r, ω̂, λi, λi+1), (20)

where

σ̄(~r, ω̂, λ−, λ+) =

N
∑

i=1

σ(~r, ω̂, êi, λi, λi+1). (21)

It can be observed that, if the weighting function

σ̄(~r, ω̂, λ−, λ+) = P = const., (22)

the right-hand side of Eq. (20) yields exactlyP -times the inverse 3D Radon transform

of the object function. Under the condition in Eq. (22), the object functionf(~r) is

obtained as

f(~x) =
1

P

N
∑

i=1

K(~r, êi, λi, λi+1). (23)

The result in Eq. (23) is referred to as the FBP reconstruction algorithm, and its deriva-

tion, as discussed above, depends upon the appropriate selection of the unit vectors{êi}

for determining the filtering directions and upon the calculation of{K(~r, êi, λi, λi+1)}.

4.2 The FBP algorithm for reverse helical trajectories

Using Pack-Noo’s formula, we derive below an FBP algorithm for image reconstruc-

tion from cone-beam data acquired with a two-turn reverse helical trajectory. Extension

of the derived algorithm to multiple-turn reverse helical trajectories is straightforward

and will be briefly described.

For a continuous scanning trajectory, one can define a polygon plane as the plane

that intersects the trajectory at more than two points. For each side of a polygon, there

exists a continuous subsegment of the source trajectory connecting two ends of the side

of the polygon. Based on Pack-Noo’s formula, a polygon-based FBP algorithm has

been developed for image reconstruction for circular sinusoidal trajectories, including

10
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the saddle trajectory [13]. For a circular sinusoidal trajectory, without loss of generality,

we consider a polygon of4 sides that intersects the trajectory 4 times. Let unit vectors

êi denote the directions of the polygon sides, i.e.,

êi =
~r0(λi+1) − ~r0(λi)

‖~r0(λi+1) − ~r0(λi)‖
, (24)

whereλi andλi+1 denote the starting and ending points of theith subsegment trajec-

tory corresponding to theith side of the polygon, andi = 1, 2, 3, and 4. In this case, it

has been shown [13, 18] that

σ̄(~r, ω̂, λ−, λ+) =

4
∑

i=1

σ(~r, ω̂, êi, λi, λi+1) = 2, (25)

whereλ− = λ1, λ+ = λ5, and~r0(λ
+) = ~r0(λ

−). Using this result in Eq. (23), one

obtains the FBP algorithm for exact image reconstruction within the polygon, which is

written as

f(~r) =
1

2

4
∑

i=1

K(~r, êi, λi, λi+1). (26)

We now extend the FBP algorithm above to reconstruct images for a two-turn re-

verse helical trajectory depicted in Fig. 5. First of all, it is important to observe, for a

given point~r within and the side direction̂ei of the polygon, that bothσ(~r, ω̂, êi, λi, λi+1)

andK(~r, êi, λi, λi+1) depend only upon the starting and ending pointsλi andλi+1,

while being independent of the shape of the continuous subsegment trajectory corre-

sponding to sidei of the polygon. Therefore, the results in Eqs. (25) and (26) are

directly applicable to image reconstruction within a 4-side polygon defined on a gen-

eral trajectory, under the conditions that (1)λ− = λ1, λ+ = λ5, and~r0(λ
+) = ~r0(λ

−)

and (2) each side of the polygon has a continuous subsegment trajectory connecting

the two ends of the side.

Consider a polygon plane in Fig. 5a that is parallel to they-z plane and that in-

tersects the reverse helical trajectory at4 distinctive points~r0(λi), wherei = 1, ..., 4;

and−2π ≤ λ1 < λ2... < λ4 ≤ 2π. It can be observed in Fig. 5b that each of sides

1, 2, and 3 of the polygon has a distinct, continuous subsegment trajectory connecting

its two ends. However, side 4 of the polygon has a distinct, discontinuous subsegment

trajectory, which contains the starting and ending pointsλs andλe of the reverse heli-

cal trajectory, as displayed in Fig. 6a. Therefore, Eq. (26) cannot directly be applied to

reconstructing an exact image within the polygon for the reverse helical trajectory.
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A continuous subsegment trajectory for side 4 may be formed through including an

additional continuous subsegment trajectory that connects the starting pointλs and the

ending pointλe of the two-turn reverse helical trajectory. For example, a continuous

subsegment trajectory passingλs andλe is formed in Fig. 6b, which includes an ad-

ditional, straight subsegment trajectory connectingλs andλe. However, an additional

subsegment trajectory requires an additional scan, thus resulting in additional scanning

effort and radiation dose.

It is indeed possible to identify a continuous subsegment trajectory for side 4 with-

out involving any additional scan to the reverse helical trajectory. As shown in Fig.

7, the union of the three distinct subsegment trajectories corresponding to sides 1, 2,

and 3 of the polygon forms a continuous subsegment trajectory for side 4 of the poly-

gon. As mentioned above,K(~r, ê4, λ4, λ5) is independent of the shape of the contin-

uous subsegment trajectory, while depending only uponλ4 andλ5, whereλ5 satisfies

~r0(λ5) = ~r0(λ1). Therefore, we can use the union of three distinct subsegment trajec-

tories of sides 1, 2, and 3 to computeK(~r, ê4, λ4, λ5). In fact, from Eq. (5) and Eqs.

(13-17), it can be seen thatK(~r, êi, λi, λi+1) depends uponλi andλi+1 through~r0(λi)

and~r0(λi+1). Therefore,

K(~r, ê4, λ4, λ5) = K(~r, ê4, λ4, λ1), (27)

in which we have used~r0(λ5) = ~r0(λ1). Furthermore, using Eq. (13), one can readily

show that

K(~r, êi, λ4, λ1) = −K(~r, êi, λ1, λ4). (28)

Finally, an exact image reconstruction within the polygon for a two-turn reverse helical

trajectory can be obtained as

f(~r) =
1

2

4
∑

i=1

K(~r, êi, λi, λi+1)

=
1

2

3
∑

i=1

K(~r, êi, λi, λi+1) −
1

2
K(~r, ê4, λ1, λ4). (29)

We refer to Eq. (29) as the FBP algorithm for image reconstruction for a reverse helical

trajectory. As shown in Fig. 8, the volume enclosed by a reverse helical trajectory can

be decomposed into a set of polygons. Therefore, one can achieve a volume-image

reconstruction for a reverse helical trajectory through reconstructing images within the

set of polygons by use of the FBP algorithm described.
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Figure 5: (a) The 4-side polygon (shaded region) formed by fourchords each of which
connects two points on the two-turn reverse helical trajectory. The polygon plane
is chosen to be parallel toy-z plane. (b) Continuous subsegment trajectories (thick
curves) corresponding to sidesi of the 4-side polygon (dashed lines), and the direc-
tionsêi of the chords (i.e., the sides) of the polygon , wherei = 1, 2, and 3.
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Figure 6: (a) For side 4 of the polygon (shade region), the subsegment trajectory con-
taining the starting and ending pointsλs andλe consists of two discontinuous seg-
ments (thick curves). (b) A continuous subsegment trajectory passingλs andλe can be
formed for side 4 through including, e.g., an additional, straight subsegment trajectory
connectingλs andλe. Again, ê4 denotes the direction of side 4 (dashed line) of the
polygon.
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Figure 7: The portion of a two-turn reverse helical trajectorypassing throughλ2 and
λ3 forms a continuous subsegment trajectory for side 4 of the polygon in Fig. 5.
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Figure 8: The volume enclosed by a two-turn reverse helical trajectory can be de-
composed into a set of parallel polygons. Without loss of generality, a set of polygons
parallel toy-z plane is shown. A volume image can be obtained through reconstructing
images within the polygons by use of the proposed FBP algorithm.
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Figure 9: (a) A polygon with 4 corners intersecting the three-turn reverse helical tra-
jectory atλ1, λ2, λ4, andλ6. (b) A polygon with 4 corners intersecting the three-turn
reverse helical trajectory atλ1, λ2, λ5, andλ6.

The FBP algorithm above was derived for a two-turn reverse helical trajectory.

Similar approach can readily be applied to deriving an FBP algorithm for multiple-

turn reverse helical trajectories. Without loss of generality, we use a three-turn reverse

helical trajectory to illustrate such an extension. Again, for the given reverse helical

trajectory, we first select a 4-side polygon whose four corners reside on the trajectory,

as shown in Fig. 9. In the case of a multiple-turn reverse helical trajectory, differ-

ent polygons can be devised. In Figs. 9a and 9b, two different 4-side polygons are

displayed. In these cases, it can be readily shown that, when unit vectors{êi} are se-

lected along each of the sides of the polygon, the result in Eq.(25) remains unchanged.

Furthermore, a continuous subsegment trajectory can be identified for each side of the

polygon. In Fig. 10, we display the continuous subsegment trajectories for each side

of the polygon in Fig. 9b. From these continuous subsegment trajectories, one can

computeK(~r, êi, λi, λi+1) and use them in Eq. (29) to obtain the image within the

polygon. Finally, one can obtain a volume image by reconstructing 2D images within a

set of polygons in the volume enclosed by the reverse helical trajectories, as displayed

in Fig. 11.

5 Numerical results

We have performed computer simulation studies to validate that the proposed FBP al-

gorithm can reconstruct images within the volume enclosed by a reverse helical trajec-

tory, including the chordless regions that cannot be reconstructed by use of the chord-

based algorithm. The low contrast 3D Shepp-Logan phantom was used that has an el-
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Figure 10: The continuous subsegment trajectories corresponding to each side side of
the polygon in Fig. 9b.
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Figure 11: The volume enclosed by a three-turn reverse helicaltrajectory can be de-
composed into a set of parallel polygons. A set of polygons parallel toy-z plane is
shown here. A volume image can be obtained through reconstructing images within
the polygons.
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lipsoid support with axes of 13.8 cm, 18.0 cm, and 18.4 cm along thex-, y- andz-axis,

respectively. The reverse helical trajectories have radii ofR = 60 cm and the distances

of D = 75 cm from the sources to detectors. For the purpose of clearly demonstrating

the chordless region in the reconstruction, we used a helical pitch ofh = 15 cm in the

simulation study involving the chord-based BPF algorithm. We used helical pitch of

h = 40 cm in the simulation study for the proposed FBP algorithm. The detector panel

considered here has an effective square area that consists of 400×400 pixels each of

which has a size of 0.78×0.78mm2.

In Figs. 12 and 13, we display images within slices atx = 0 cm (a),y = 0 cm

(b), andz = −2.5 cm (c) reconstructed on one-turn and multiple-turn chords by using

the chord-based BPF algorithm. Clearly, the BPF algorithm can accurately reconstruct

images within the regions covered the chords. Comparison of the reconstructible re-

gions in Figs. 12 and 13 indicates that the use of multiple-turn chords leads to a larger

reconstructible region than that only from the one-turn chords. However, it can also be

observed in both cases that the BPF algorithm cannot yield images within the chordless

regions (e.g., the dark regions between the two reconstructible regions).

In Fig. 14, we show images within slices atx = 0 cm (a),y = 0 cm (b), andz =

−2.5 cm (c) reconstructed by using the proposed FBP algorithm. The results indicate

that the proposed algorithm can reconstruct an image within the volume enclosed by a

reverse helical trajectory. In an attempt to demonstrate quantitatively the reconstruction

accuracy, we display in Fig. 15a the profile along a vertical line, specified byx = 0 cm

andy = −2.5 cm, passing through the Shepp-Logan phantom, as indicated in Fig. 15b.

For comparison, we also plot the corresponding true profile as dotted curve in Fig. 15a.

The profile results suggest that the proposed FBP algorithm can accurately reconstruct

an image within the entire volume enclosed by the reverse helical trajectory. We have

also performed a preliminary reconstruction from noisy data by use of the proposed

FBP algorithm. We included Gaussian noise in the projection data with the noise level

of 0.25 %. From the noisy data, we reconstructed images by use of the proposed FBP

algorithm. In Fig. 16, we display the reconstructed noisy images within slices atx = 0

cm (a),y = 0 cm (b), andz = −2.5 cm (c).

6 Discussion

In the work, we have proposed reverse helical trajectories for acquiring cone-beam

data, and have investigated and developed algorithms for image reconstruction from
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(a) (b) (c)

Figure 12: Images within slices atx = 0 cm (a),y = 0 cm (b), andz = −2.5 cm
(c) reconstructed from noiseless data by use of the chord-based algorithm on one-turn
chords. The display window used in this paper is [1.0,1.04].

(a) (b) (c)

Figure 13: Images within slices atx = 0 cm (a),y = 0 cm (b), andz = −2.5 cm (c)
reconstructed from noiseless data by use of the chord-based algorithm on both one-turn
and two-turn chords.

(a) (b) (c)

Figure 14: Images within slices atx = 0 cm (a),y = 0 cm (b), andz = −2.5 cm (c)
reconstructed from noiseless data by use of the proposed FBP algorithm.
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Figure 15: (a) Profile on the vertical line specified byx = 0 cm andy = −2.5 cm,
which is also indicated in (b). The reconstructed and true profiles are displayed as solid
and dotted curves in (a).

(b) (c)(a)

Figure 16: Images within slices atx = 0 cm (a),y = 0 cm (b), andz = −2.5 cm (c)
reconstructed from the noisy data by use of the proposed FBP algorithm.
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such cone-beam data. The proposed reverse helical trajectories and reconstruction al-

gorithms may find IGRT and other applications. Recently, chord-based algorithms such

as the BPF algorithm have been developed for image reconstruction from data acquired

with general trajectories, provided that the trajectories not only satisfy Tuy’s condition

but also have chords covering their enclosed volumes. However, reverse helical trajec-

tories are unique in that, although they satisfy Tuy’s sufficient data condition, certain

parts of the volume enclosed by them are not covered by chords. Consequently, the

chord-based algorithms cannot reconstruct images within the chordless regions of re-

verse helical trajectories. For a given reverse helical trajectory, we have investigated

its chordless regions; and we then conducted image reconstruction by use of the chord-

based BPF algorithm to demonstrate the non-reconstructible, chordless regions.

As mentioned above, however, the volume enclosed by a reverse helical trajec-

tory satisfies Tuy’s condition, suggesting that an exact image within the reverse helix

volume including the chordless regions can be reconstructed. We have proposed an

FBP algorithm based on Pack-Noo’s formula to reconstruct the images within the vol-

ume enclosed by a reverse helical trajectory, thus eliminating the chordless region that

is non-reconstructible by use of the chord-based algorithms. Numerical studies were

also conducted to validate the proposed FBP algorithm. Results of the numerical stud-

ies confirm that, unlike the chord-based algorithm, the proposed FBP algorithm can

reconstruct an accurate image for the entire reverse helix volume. Interestingly, the

developed FBP algorithm allows certain transverse data truncation. This is because the

data filtering is determined only by the directions of the polygon sides within which the

image is to be reconstructed. When the polygons covering the reverse helix volume are

selected to be, e.g., parallel to they-z plane, as we did here, data truncation along thex-

axis outside the volume covered the polygons does not affect the image-reconstruction

accuracy within these polygons. However, the proposed FBP algorithm generally al-

lows no truncation longitudinally and is thus incapable of dealing with a long object

problem. For a reverse helical trajectory with a long object problem, we are developing

a combined image-reconstruction method in which the chord-based algorithm is used

for addressing the long object problem, whereas the proposed FBP algorithm is used

for dealing with image reconstruction within the chordless regions. The research of

this combined method is beyond the scope of the current work and will be reported

elsewhere in the future.

We have also discussed the extension of the proposed FBP algorithm to reconstruct
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λ1 −2π ≤ λ1 ≤ −π −π < λ1 < 0 0 ≤ λ1 ≤ π π < λ1 ≤ 2π

z(λ1)
h

2π
λ1

h

2π
λ1

h

2π
λ1

h

2π
λ1

One-turn chords z(λ2)
h

2π
(λ1 + π) none h

2π
(λ1 + π) none

multiple-turn chords z(λ2)
h

2π
(−λ1 − π) h

2π
(−λ1 + π) none none

Table 1: Relationship between thez-coordinates of chords passing throughz-axis for
a two-turn reverse helical trajectory.

images for multiple-turn reverse helical trajectories. In fact, it should be pointed out

that the proposed FBP algorithm can readily be generalized to address the problems of

image reconstruction for reverse helical trajectories with tilted axis, or variable pitches,

or additional scanning trajectory segments.

7 Appendix: Analysis of the Chordless Regions in a Re-
verse Helical Trajectory

It is shown here that there exists chordless regions in the volume enclosed by a two-

turn reverse helical trajectory. For simplifying the discussion, we consider intersecting

points alongz-axis, which is the rotation axis, with all the possible chords, and we

show that there exists a region between intersecting regions onz-axis. A chord passing

throughz-axis defines a unique plane containing the chord andz-axis. For a given

chord passing throughz-axis, we label the angular parameter of the lower end byλ1

and that of the upper end byλ2. A chord for example is presented on the defined plane

in Fig. 17. Using circular symmetry, we can establish the functional relationship,

as summarized in Table 1, betweenz(λ1)andz(λ2) for one-turn chords and also for

multiple-turn chords, wherez(λ) indicates thez-coordinate of a source point on the

reverse helical trajectory atλ. Thez-coordinate,z0(λ1, λ2), of the intersecting point

of a chord withz-axis is given by

z0(λ1, λ2) =
1

2
[z(λ1) + z(λ2)], (30)

which is in the shaded regions in Fig.17a and 17b for one-turn and multiple-turn

chords. The chordless (white) region can be observed between the intersecting (shaded)

regions.
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Figure 17: Diagrams demonstrating the chordless region alongz-axis for a two-turn
reverse helical trajectory. (a) An exemplary chord plotted on the plane defined by the
chord andz-axis. (b) Collection of all one-turn chords. (c) Collection of all chords
including multiple-turn chords.
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Cone-beam microcomputed tomography �microCT� is one of the most popular choices for small
animal imaging which is becoming an important tool for studying animal models with transplanted
diseases. Region-of-interest �ROI� imaging techniques in CT, which can reconstruct an ROI image
from the projection data set of the ROI, can be used not only for reducing imaging-radiation
exposure to the subject and scatters to the detector but also for potentially increasing spatial
resolution of the reconstructed images. Increasing spatial resolution in microCT images can facili-
tate improved accuracy in many assessment tasks. A method proposed previously for increasing CT
image spatial resolution entails the exploitation of the geometric magnification in cone-beam CT.
Due to finite detector size, however, this method can lead to data truncation for a large geometric
magnification. The Feldkamp-Davis-Kress �FDK� algorithm yields images with artifacts when trun-
cated data are used, whereas the recently developed backprojection filtration �BPF� algorithm is
capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data.
We apply the BPF algorithm to reconstructing ROI images from truncated data of three different
objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the
FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The
results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm
can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data.
In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implica-
tion of the studies is that, when truncated data are acquired with a configuration of a large geometric
magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of
a ROI image. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2804924�
I. INTRODUCTION

With the rapid growth of both molecular probes for and ani-
mal models of human disease, small animal imaging is be-
coming an essential instrument in the investigator’s toolbox.
Microcomputed tomography �microCT� is particularly well
suited for small animal imaging because of its high spatial
resolution and high signal-to-noise ratio.1–3 Applications of
microCT imaging include the anatomic visualization of vas-
cular structures �e.g., angiogenesis�, tumors, bone pathology,
and cardiac disease, with some microCT systems offering
cardiac- and/or respiratory gating to improve resolution.4–8

Indeed, high resolution microCT is often combined with
functional imaging modalities such as single-photon emis-
sion computed tomography and positron emission tomogra-
phy to coregister pathology to morphology.9 Most microCT

systems used in research include a charge coupled device or

4923 Med. Phys. 34 „12…, December 2007 0094-2405/2007/34„
a flat panel detector as one of its main components, which
leads to a cone-beam microCT scanning configuration.

In microCT applications, it is not uncommon that one
seeks to obtain an image only within a region of interest
�ROI� of the subject, and there remains active efforts in de-
veloping ROI imaging approaches, because they can lead to
reduced imaging-radiation exposure to the subject and less
data artifacts such as scatter. ROI imaging techniques can be
roughly divided into two groups. One approach using the
local tomography method provides edge-enhanced images
from truncated data.10 The local tomography can reconstruct
singularities in tomographic images using the projection data
only near each point in the ROI.11 Even though the edge-
enhanced images may be useful in imaging tasks where pri-
mary interest concerns the edge information,12 this approach

cannot improve image contrast information which is impor-

492312…/4923/11/$23.00 © 2007 Am. Assoc. Phys. Med.37
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tant in most applications. An alternative approach, the so-
called zoom-in method, utilizes two projection data sets; one
obtained with a full field-of-view �FOV� scan and the other
obtained with a limited FOV scan with a larger
magnification.13 A complete data set with locally varying
sampling density, as a result, is prepared for image recon-
struction, and high-resolution local imaging capability with-
out contrast anomalies can be obtained. The major draw-
backs of this approach, however, are doubled scan time and
higher x-ray exposure, both of which are important issues in
small animal imaging.

In recent years, considerable advances have been made in
the development of analytic algorithms for image reconstruc-
tion in cone-beam CT. These algorithms have capabilities
that cannot be achieved by conventional Feldkamp-Davis-
Kress �FDK�-type algorithms.14–17 For example, in a circular
cone-beam CT which is the dominant scanning configuration
for microCT animal imaging, the backprojection filtration
�BPF� algorithm18–20 can accurately reconstruct, from certain
truncated projection data, ROI images free of truncation ar-
tifacts that would otherwise appear in the images recon-
structed with the FDK-type algorithms. The PI-line-based
BPF algorithm is an exact image reconstruction algorithm
that reconstructs the image on the PI lines, the lines specifi-
cally defined for a helical cone-beam CT, by backprojecting
the cone-beam data derivatives onto the PI lines and then by
filtering along the PI lines. As discussed above, the zoom-in
method requires, in addition to a limited FOV scan, a full
FOV scan to avoid data truncation problem because it em-
ploys a FDK-type algorithm for image reconstruction. By
use of the BPF algorithm, however, accurate ROI images
without truncation artifacts can be obtained only from a
single scan with a limited FOV.

The BPF algorithm for circular cone-beam CT has been
used to reconstruct images from truncated cone-beam data
for potential applications in image-guided radiation
therapy.21 Reduction of scanning time, one of the advantages
of using ROI imaging with the PI-line-based BPF algorithm,
has also been explored for reducing the amount of motion-
contaminated data used for reconstruction in cardiac
imaging.22 In this work, we propose an ROI imaging ap-
proach, which exploits the useful features of the BPF algo-
rithm for small animal imaging. Specifically, we apply the
BPF algorithm to ROI imaging from truncated data of three
different objects acquired with a circular cone-beam mi-
croCT system. We compare images reconstructed by use of
the FDK and BPF algorithms from both truncated and non-
truncated cone-beam data. The ROI images obtained with the
BPF algorithm are virtually free of the truncation artifacts
often observed in ROI images obtained with the FDK-type
algorithms. It has previously been demonstrated quantita-
tively that image spatial resolution can be increased by use
of data acquired with geometric magnification in convergent-
beam CT.23 In microCT, because the detector size is limited,
the use of a large geometric magnification can lead to trun-
cated data. Motivated by our results of ROI imaging, we also

propose to exploit the unique capability of the BPF algorithm

Medical Physics, Vol. 34, No. 12, December 2007
for accurate ROI image reconstruction from truncated data to
improve spatial resolution of the ROI image of a mouse leg
bearing osteosarcoma.

The paper is organized as follows. In Sec. II, we summa-
rize the ROI scanning configurations and the BPF algorithm.
In Sec. III, we describe three phantoms and the microCT
system used in our experimental studies. In Sec. IV, we per-
form validation studies using complete and truncated cone-
beam data of the phantoms. Using the truncated data ac-
quired with a large geometric magnification, we demonstrate
the possibility of exploiting the unique property of the BPF
algorithm for enhancing the spatial resolution of an ROI im-
age. Finally, we discuss the implications of this research in
Sec. V.

II. RECONSTRUCTION ALGORITHM

In this section, we describe the PI-line-based BPF algo-
rithm for circular cone-beam CT, and describe the ROI scan-
ning configuration used in this work.

II.A. PI-lines

The PI-line concept began to be used in research of image
reconstruction for helical cone-beam CT, which has been a
configuration of interest in diagnostic CT. A helical cone-
beam scan can be obtained when the imaged object is trans-
lated longitudinally while the x-ray source and detector ro-
tate on a transverse plane. From the perspective of the object,
the source trajectory is a helix and can be written in the
coordinate system �x ,y ,z� that is fixed on the imaged object
as

r0��� = �R cos �,R sin �,
h

2�
��T

, �1�

where R denotes the distance from the source to the rotation
axis, h the pitch of the helix, and � the rotation angle of the
x-ray source. A PI-line is defined as a straight line intersect-
ing with the helical source trajectory at any two points la-
beled by �1 and �2, where 	�1−�2	�2�.24 Accordingly, a
PI-line segment is defined as the line segment of a PI line
inside the helix. It has been shown that a given point r within
the helix determines a unique PI-line segment that passes
through the point and also that all the possible PI-line seg-
ments can completely fill the space inside the helix.24 There-
fore, if the images on all the PI-line segments can be recon-
structed, so can the object image inside the helix. As will be
mathematically presented in the following sections, the PI-
line-based BPF algorithm can exactly reconstruct the exact
image on a PI-line segment from the projection data of the
PI-line segment acquired from �1 to �2, where �1 and �2

define the PI-line segment of interest. The algorithm recon-
structs the image on a PI-line segment by first backprojecting
the data derivatives onto the PI-line segment and then per-

forming a one-dimensional filtering along the PI line.
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II.B. Circular cone-beam scans and virtual PI lines

Since a circular trajectory can be considered as a helical
trajectory with helical pitch of zero, the PI-line-based BPF
algorithm can reconstruct the exact image of an object for the
plane on which the physical source trajectory resides. We
call this plane the midplane. Without loss of generality, the
midplane can be represented by z=0, and the circular source
trajectory can be expressed as

rc��� = �R cos �,R sin �,0�T. �2�

An actual PI-line segment can be defined only within the
midplane. For off midplanes �i.e., z�0�, no actual source
trajectory and, consequently, no actual PI-line segment ex-
ists. Therefore, the PI-line-based BPF algorithm for helical
cone-beam CT cannot be used directly for reconstructing im-
ages in off midplanes from cone-beam data. The concept of
virtual trajectory and virtual PI-line segments has been intro-
duced for approximate image reconstruction in off
midplanes.16

As illustrated in Fig. 1, a virtual circular trajectory in an
off midplane at z�0 uses the z axis as its rotation axis and
has a radius R identical to that of the actual circular trajec-
tory in the midplane. The collection of the actual source
trajectory and a stack of virtual circular trajectories encloses
a three-dimensional �3D� cylindrical volume, which is re-
ferred to as the virtual cylinder. We define a straight line
segment connecting any two points on a virtual trajectory as
a virtual PI-line segment. It is not difficult to identify sets of
actual PI-line segments that do not intersect with each other
and thus that can fill completely the area enclosed by the
actual circular trajectory.16 Similarly, the virtual PI-line seg-
ments can be introduced to fill completely the area enclosed
by a virtual circular trajectory. Therefore, the virtual cylinder
can be completely filled by actual and virtual PI-line seg-

FIG. 1. Virtual circular trajectory and virtual PI-line segments. Actual PI-
line segments are defined on the actual source trajectory at z=0 and virtual
PI-line segments are defined similarly on virtual source trajectories at z
�0.
ments so that the image of an object within the virtual cyl-
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inder can be reconstructed through reconstructing images on
those PI-line segments.

II.C. BPF algorithm for circular cone-beam CT

For simplicity of discussion below, we will refer to both
an actual and a virtual PI-line segment as a PI-line segment.
We assume that the 3D image function f�r� to be recon-
structed situates entirely within the virtual cylinder. As
shown in Fig. 2�a�, two coordinate systems �x ,y ,z� and
�u ,� ,w� are used to describe the geometry of a circular scan.
They are fixed on the imaged object and the rotating source
point, respectively, and referred to as the fixed-coordinate
and the rotation-coordinate systems.

The unit vectors of the rotation-coordinate system are ex-
pressed in terms of the fixed-coordinate system as

êu��� = �− sin �,cos �,0�T,

ê���� = �0,0,1�T, �3�

êw��� = �cos �,sin �,0�T.

The fixed and rotation coordinates are related through

x = − u sin � + �w + R�cos � ,

y = u cos � + �w + R�sin � ,

z = � . �4�

The planar detector located at a distance S from the source is
oriented parallel to êu and to ê� for all scanning angles � as
shown in Fig. 2�a�. A point on the detector-coordinate �ud ,�d�
can be related to �u ,� ,w� in the rotation-coordinate system
by

ud = −
S

w
u, �d = −

S

w
� . �5�

Cone-beam projections of the image f�r� at a particular scan-
ning angle � and a detector position �ud ,�d� can be expressed

FIG. 2. �a� Cone-beam geometry with a circular source trajectory. The dis-
tance from the source to the center of the detector is represented by S. The
center of rotation is represented by O which is the origin of the stationary
coordinate �x ,y ,z�. The origin of the rotating coordinate �u ,� ,w� is defined
on the circular trajectory of radius R. �ud ,�d� is used as the detector coordi-
nate. �b� A virtual PI-line segment connecting scanning angles specified by
�1 and �2 at z=z0 is parameterized by x�.
as
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P�ud,�d,�� = 

0

�

dsf�rc��� + s�̂� , �6�

where �̂ denotes the direction of the ray from the source to a
specific detector position �ud ,�d�. �̂ can be determined by

�̂ =
1

A�ud,�d�
�udêu��� + �dê���� − Sêw���� , �7�

where

A�ud,�d� = �ud
2 + �d

2 + S2. �8�

The direction of a PI-line segment is defined as

ê�c =
rc��2� − rc��1�
	rc��2� − rc��1�	

. �9�

The location of a point on a PI-line segment can be ex-
pressed as

r = rc1 + x�ê�c, �10�

where

rc1 =
rc��2� + rc��1�

2
+ z0ê� �11�

and x�� �x�1 ,x�2�. The parameters, x�1 and x�2, denote the
two ends of the PI-line segment. Therefore, a point r can be
specified in terms of PI-line coordinates �x� ,�1 ,�2 ,z0� as
shown in Fig. 2�b�.

Let f��x� ,�1 ,�2 ,z0� denote the image on a PI-line seg-
ment. Also, let x��1 and x��2 denote the two ends of a sup-
port on the segment, whereby f��x� ,�1 ,�2 ,z0�=0 for
x�� �x��1 ,x��2�. We define the segment corresponding to
�x��1 ,x��2� as a PI-line support segment. By the assumption
of the support size of f�r�, we have �x��1 ,x��2�� �x�1 ,x�2�.
We also assume that the actual support of the object function
on the PI-line is shorter than the support segment. The BPF
algorithm for cone-beam scans can be written as follows:20,21

f��x�,�1,�2,z0� =
1

2�2

1
��x��2 − x���x� − x��1�

� �

x��1

x��2

dx��
��x��2 − x�� ��x�� − x��1�

�x� − x�� �

� g��x�� ,�1,�2,z0� + 2�P0
 , �12�

where x�� �x��1 ,x��2� and P0 is the projection along the ray
coinciding with the PI-line segment. The backprojection term
g��x�� ,�1 ,�2 ,z0� can be expressed as

g��x�� ,�1,�2,z0� = 

�1

�2 d�

	r� − rc���	
d

d�
	P�ud�,�d�,��	�̂�, �13�

where r can be determined through Eq. �10� and �ud� ,�d�� can
be determined by Eqs. �4� and �5�.

Note that the length of a PI-line support segment can be
substantially smaller than the full length of the correspond-

ing PI-line segment. The integration range in Eq. �12�, which
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is related to the filtering process, implies that the data back-
projected only onto the PI-line support segment is needed to
reconstruct the image on the corresponding PI-line segment.
This is the key feature of the PI-line-based BPF algorithm
that enables the ROI image reconstruction in this work.

II.D. ROI scanning configuration

Two data sufficiency conditions for reconstructing an im-
age on a PI-line segment have been identified.20,25 The first
condition is that the angular reconstruction interval must be
sufficient to reconstruct the image on the PI-line segment
specified by �1 and �2. The second condition is that the
illumination of the cone beam must be sufficient to cover the
PI-line support segment, which is defined as �x��1 ,x��2�, at
each projection view within the reconstruction interval.
These data sufficiency conditions lead to a unique property
of the PI-line-based BPF algorithm: It can reconstruct ROI
images, from circular cone-beam data containing transverse
truncation, with an accuracy comparable to that obtained
from nontruncated circular cone-beam data.

In this work, a full scan, the range of which is 2�, has
been used. The first condition of the data sufficiency condi-
tions, therefore, is always satisfied and in fact there is a re-
dundancy in the projection data for any PI-line segment. As
shown in Fig. 3�a�, the image on a PI-line segment specified
by �1 and �2 can be reconstructed from two sets of cone-
beam data; one set comes from the scanning range depicted
as a solid line, and the other from the dotted-lined part. We
used 1 /2 as the weighting factor for the images reconstructed
from two data sets.

The fan angle of the cone-beam has been fixed for every
projection view to yield a constant FOV. The region under
illumination for every projection view, therefore, in 3D con-
structs a cylindrical volume whose axis coincides with that
of the virtual cylinder and whose radius, determined by the
fan angle, is less than the radius of the virtual cylinder. We
refer to this cylinder as an FOV cylinder. Note that the vir-

FIG. 3. �a� Redundancy in a full circular scan. Image on the PI-line segment
connecting two scanning angles of �1 and �2 can be reconstructed using the
data either from solid line part of the source trajectory or from dashed line
part, or using the data from both parts. �b� Illustration of the ROI image
reconstruction on a PI-line support segment. The FOV cylinder is deter-
mined by the fan angle of the cone beam. The length of a PI-line support
segment, which is determined by x��1 and x��2, can be selected so as to
cover the imaging target and to be completely enclosed by the FOV cylin-
der; x�1 and x�2 denote two end points of the PI-line segment.
tual cylinder is defined by the actual and virtual source tra-
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jectories, and the FOV cylinder is defined by the fixed fan
angle of the cone-beam x ray. Schematic is shown in Fig.
3�b�. Projection data outside of the FOV for each view have
been truncated for ROI image reconstruction. The recon-
structible ROI is now determined by the PI-line support seg-
ments within the FOV cylinder. For a PI-line segment speci-
fied by �1 and �2, as shown in Fig. 3�b�, if the PI-line support
segment, �x��1 ,x��2�, is completely located within the FOV
cylinder, the image on the PI-line support segment can be
reconstructed. In other words, the PI-line support segments
can be selected such that they enclose the ROI object entirely
and they are placed within the FOV cylinder. The PI-line
support segments are selected in this work such that they

FIG. 4. Reconstructed ROI in this work. PI-line support segments are se-
lected such that the set of them can form a rectangle covering the imaging
target and being enclosed completely by the FOV cylinder. The PI-line
segments are represented by dotted lines and corresponding PI-line support
segments are represented by thick solid lines.

FIG. 5. Data requirements for the BPF algorithm and for the FDK algorithm.
�a� For image reconstruction of points on a PI-line support segment defined
by x��1 and x��2, at a given view, the BPF algorithm needs the data only of
the projection only on the detector of the support segment, whereas the FDK
algorithm requires full coverage of the object. Therefore, the detector sizes
needed for the two algorithms are LBPF and LFDK, respectively. �b� For the
scanning geometry of our work, as illustrated in Fig. 4, the BPF algorithm
needs the projection data only within the length, LBPF, of the detector for
every view. In contrast, the FDK algorithm would need more projection data

for every view than does the BPF algorithm.
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form a rectangular ROI containing the target image as shown
in Fig. 4.

In Fig. 5, the PI-line-based BPF algorithm used for ROI
image reconstruction is conceptually compared with the
FDK algorithm. In the FDK algorithm, since filtering process
takes place before backprojection, the calculation of the fil-
tering occurs on the detector plane and, as a result, the data
required for exact image reconstruction of an ROI image
must have no data truncation. Otherwise, the filtering pro-
cess, when applied on truncated data, produces the truncation
artifacts in the reconstructed images.26 However, in the BPF
algorithm, since the backprojection of the data derivative is
filtered along each PI-line support segment, the calculation
of the filtering occurs in the image space and, as a result, the
data needed for exact image reconstruction of an ROI can be
substantially smaller than that needed for the FDK algorithm.
Specifically, at each view, the data only over the projection
on the detector of a PI-line support segment are required for
exact image reconstruction of the object on the PI-line sup-
port segment as shown in Fig. 5�a�. As long as the image
support on a PI line is covered completely by the PI-line
support segment, filtering along the PI-line support segment
after backprojection will not cause any artifacts. In this work,
the ROI formed by the PI-line support segments is enclosed
completely by the FOV cylinder defined by a constant size of
detector as shown in Fig. 5�b�. Therefore, although the data
are truncated with respect to the entire object, they are suf-
ficient for exact reconstruction of ROI images by use of the
BPF algorithm.

Even though we have fixed the fan angle of the cone-
beam in this work for the simplicity of the system, the fan
angle can vary for each projection view such that only the set
of PI-line support segments of the ROI is completely illumi-
nated. Dynamically variable collimator can be devised and
implemented for this purpose, and is planned for the future
work.

III. SYSTEM AND PHANTOMS

We have applied the PI-line-based BPF algorithm to re-
constructing ROI images of a physical phantom and mice
from experimentally acquired cone-beam data.

III.A. MicroCT system

A prototype microCT system has been developed and its
initial performance has been demonstrated.27 The system
consists of a microfocal x-ray source, an orthogonally
mounted rotary stage with object holder, and a CsI-coupled
complementary metal oxide semiconductor �CMOS� detec-
tor. The microfocal x-ray source �MX-20, Faxitron, USA�,
consisting of a tungsten anode with beryllium exit window,
can be operated at between 10 and 35 kV, and can yield
focal spot size of 20 �m. The 14 bit digital camera �Biop-
tics, USA� consists of a CsI scintillator plate and a 2048
�1024 array of CMOS thin-film transistors and photo-
diodes. The length of the detector is 10.04 cm and the height
is 5.02 cm. The rotation axis is aligned along the height di-

rection of the detector. The rotary stage �ADRS-150, Aero-
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tech, USA� has an accuracy about 10 arcsec. A robust and
simple geometric calibration method has been devised and
used to produce calibrated cone-beam data for image
reconstruction.26,27

III.B. Materials

Three subjects were prepared for ROI imaging. The first
is a uniform lucite phantom. Two circular cylinders with dif-
ferent diameters are put together and aligned along the rota-
tion axis of the system. The diameter of the larger cylinder is
2 cm and that of the smaller one is 1 cm. The smaller cylin-
der is used as a ROI imaging target. The second is a
formalin-fixed C3H mouse on one leg of which an FSa fib-
rosarcoma has been grown. The leg bearing the fibrosarcoma
is considered as the ROI target. These two objects are used

FIG. 6. Picture of a mouse in the sample holder. A formalin-fixed mouse is
wrapped by a plastic bag and then tightly inserted to the sample holder
through the hole of which the leg under interest is pulled out. A styrofoam is
used to support the leg by taping.
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for the purpose of validating practical applicability of the
proposed algorithm. The validation in this work is not in-
tended to evaluate thoroughly the algorithm itself, which has
been done with numerical studies in our previous work,20,21

but to demonstrate the ability of the algorithm to reconstruct
ROI images experimentally. Graphical comparison study
with line profiling of the reconstructed images will be per-
formed for the validation. The third subject is another
formalin-fixed mouse one leg of which contains an osteosa-
rcoma. The leg bearing the osteosarcoma is again considered
as the ROI target. Enhancement of the spatial resolution will
be graphically presented using the reconstructed image of the
osteosarcoma by the proposed algorithm.

A sample holder has been used to support the mice with
the leg of interest placed at the rotation center as shown in
Fig. 6. In order to help understand the imaging objects, we
present 3D images reconstructed from complete data sets.
Figure 7 shows volume-rendered views computed with
opacity-weighted compositing and gradient-based shading
�VolView 2.0: Kitware, Inc.� of the three objects recon-
structed by the FDK algorithm from nontruncated data. Note
that we have cropped the 3D reconstructed data so that we
can remove some part of the sample holder to help visualize
both the mouse body inside the sample holder and the leg
outside of the sample holder.

IV. EXPERIMENTAL STUDIES

In this section, images reconstructed by use of the FDK
algorithm and by the PI-line-based BPF algorithm from both
truncated and nontruncated cone-beam data are systemati-
cally compared. It is important to understand that the valida-
tion of the proposed algorithm does not include correction
schemes such as scatter correction and beam-hardening cor-
rection which may be necessary for obtaining more accurate
images. The point is to compare the performance of the pro-
posed algorithm with that of a conventional FDK algorithm
in case of data truncation as well as of complete data.

IV.A. Lucite phantom studies

The full-scan projection data set were acquired at the ra-
dius of 37.1 cm for the circular trajectory and at 57.2 cm
source-to-detector distance. Three hundred and sixty projec-
tion views spaced by 1° were obtained. The acquired data
were then processed to reconstruct either full or ROI images
of the phantom by use of a FDK algorithm and also by the

FIG. 7. Volume rendered images of the
objects used in the work. �a� Lucite
phantom. The smaller cylinder is con-
sidered as a ROI in this study. �b� A
formalin-fixed mouse with one of its
leg bearing FSa fibrosarcoma. �c� A
formalin-fixed mouse with one of its
leg bearing osteosarcoma.
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proposed algorithm. A 5.8 cm reconstruction FOV was used
for full image reconstruction from nontruncated data set. We
display the reconstructed full images at midplane and an off
midplane by the two algorithms in Fig. 8. The display win-
dow used is �0.5 cm−1, 1.5 cm−1�. This window is selected to
present the difference of the reconstructed images in terms of
truncation artifacts clearly.

Reconstructed images obtained with the two algorithms
from nontruncated data appear to be almost identical. Line
profiles along the specified horizontal lines in the images are
also shown in Fig. 9 for a more quantitative comparison.
Dotted curves represent the line profiles of the images ob-
tained by FDK algorithm and solid curves represent those
obtained by BPF algorithm. They agree within a negligible
difference.

A cupping artifact, in which the image has enhanced pixel
values at the edge and decreased values at the center, is
prominently observed throughout the images. This is due to

FIG. 8. Slice images of the lucite phantom reconstructed by use of FDK
�left� and BPF �right� algorithms within the midplane at z=0 �top� and an
off-mid plane at z=0.5 cm �bottom� from nontruncated data. The display
window is �0.5 cm−1, 1.5 cm−1�.

FIG. 9. Profiles along the white horizontal lines indicated in Fig. 8 for re-
constructed images �a� at the midplane and �b� at the off-midplane. Dotted
curves represent the results obtained from FDK algorithm and solid curves
from BPF algorithm. Dotted curves are hardly seen because of the excellent

overlap with solid curves.
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scatter and beam hardening of the x-ray beam.28 In this work,
however, correction for the cupping artifact has not been
attempted since the existence of the cupping artifact does not
compromise the goal of this paper. Ring artifact is also ob-
servable in the images, which is dominantly due to nonuni-
form response of the detector.

For ROI image reconstruction, a 1.6 cm reconstruction
FOV was used. Projection data outside of the FOV for each
view have been manually deleted to produce data truncation.
Therefore, only one third of columns in the middle of the
original projection data matrix remains for ROI image recon-
struction. We display the reconstructed ROI images at mid-
plane and an off midplane by the two algorithms from the
truncated data in Fig. 10 with the same display window as
used in Fig. 8. Line profiles along the specified horizontal
lines in the images are also shown in Fig. 11. Data truncation
artifacts are present in the images reconstructed by FDK al-
gorithm. To compare the images reconstructed by the PI-line-
based BPF algorithm from nontruncated and truncated data,

FIG. 10. Slice images of the smaller cylinder of the lucite phantom recon-
structed by use of FDK �left� and BPF �right� algorithms within the mid-
plane at z=0 �top� and an off-midplane at z=0.5 cm �bottom� from truncated
data. The display window is �0.5 cm−1, 1.5 cm−1�.

FIG. 11. Profiles along the white horizontal lines indicated in Fig. 10 for
reconstructed images �a� at the midplane and �b� at the off midplane. Dotted
curves represent the results obtained from FDK algorithm and solid curves

from BPF algorithm.
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the line profiles along the previously specified lines are plot-
ted in Fig. 12. Dotted curves represent the line profiles of the
images obtained from truncated data and solid curves repre-
sent those obtained from nontruncated data. Two curves
show a good agreement, which implies the successful ROI
image reconstruction from truncated data by use of the PI-
line-based BPF algorithm.

IV.B. Mouse with FSa fibrosarcoma studies

The second object used to validate the proposed algorithm
was a formalin-fixed mouse with an FSa fibrosarcoma on one
leg. FSa fibrosarcoma is one kind of soft-tissue tumor grown
specifically in mice and rats. The full-scan projection data
sets were acquired at a radius of 37.1 cm for the circular
trajectory, and at 57.2 cm source-to-detector distance. Three
hundred sixty projection views spaced by 1° were again ob-
tained. A 5 cm reconstruction FOV was used for full image
reconstruction from nontruncated data. A 2 cm reconstruc-
tion FOV was used for ROI image reconstruction from trun-
cated data. Image reconstructions were performed both for
nontruncated and truncated data with a FDK algorithm and
the PI-line-based BPF algorithm. Figure 13 shows two-
dimensional �2D� slice images reconstructed with the FDK
algorithm left and the BPF algorithm right from nontrun-
cated data, at midplane top and at an off-midplane bottom.
The display window used is �0.2 cm−1, 2.5 cm−1�. Recon-
structed images from the two algorithms using nontruncated
data again appear to be almost identical. Line profiles along
the specified horizontal lines in the images are shown in Fig.
14 for more quantitative comparison. Dotted curves repre-
sent the line profiles of the images obtained by FDK algo-
rithm and solid curves represent those obtained by BPF al-
gorithm. They agree within a negligible difference.

Figure 15 shows 2D slice images reconstructed with the
FDK algorithm �left� and the BPF algorithm �right� from
truncated data, at midplane �top� and at an off-midplane �bot-
tom�. With the same display window of �0.2 cm−1, 2.5 cm−1�,
it is clearly observed that the images produced by FDK al-
gorithm have increased pixel values compared with those by
BPF algorithm. Line profiles along the specified horizontal
lines in the images are shown in Fig. 16. Again dotted curves
represent the line profiles of the images obtained by FDK

FIG. 12. Profiles along the white horizontal lines indicated in Fig. 8 and in
Fig. 10 for reconstructed images by use of the BPF algorithm �a� at the
midplane and �b� at the off-midplane from nontruncated data and from trun-
cated data. Dotted curves represent the results obtained from truncated data
and solid curves from nontruncated data.
algorithm and solid curves represent those obtained by BPF
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algorithm. To compare the images reconstructed by the BPF
algorithm from nontruncated data and from truncated data,
the line profiles along the previously specified lines are plot-
ted in Fig. 17. Dotted curves represent the line profiles of the
images obtained from truncated data and solid curves repre-
sent those obtained from nontruncated data. The two curves
are in a good agreement.

IV.C. Enhancement of spatial resolution

In previous sections, the PI-line-based BPF algorithm’s
capability of reconstructing ROI images without truncation
artifacts from truncated projection data has been demon-
strated experimentally. In this section, this capability of the
BPF algorithm is utilized to increase detector sampling den-
sity by use of geometric magnification of the imaged object
thereby enhancing the spatial resolution of the ROI image
without degrading image contrast.

FIG. 13. Slice images of the mouse with FSa fibrosarcoma reconstructed by
use of FDK �left� and BPF �right� algorithms within the midplane at z=0
�top� and an off-midplane at z=0.25 cm �bottom� from nontruncated data.
The display window is �0.2 cm−1, 2.5 cm−1�.

FIG. 14. Profiles along the white horizontal lines indicated in Fig. 13 for
reconstructed images �a� at the midplane and �b� at the off-midplane. Dotted
curves represent the results obtained from FDK algorithm and solid curves

from BPF algorithm.
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In order to quantitatively assess the spatial resolution in
the reconstructed images, specially designed phantoms such
as a bar phantom have to be used in the evaluation study.
However, since those phantoms may not be adequate for our
ROI imaging geometry, we have used a mouse having an
osteosarcoma on one leg which has relatively detailed fea-
tures of the bony structure developed by the osteosarcoma.
Only a qualitative, graphical interpretation of the recon-
structed images in terms of spatial resolution, therefore, is
presented in this paper. Quantitative analysis of the enhance-
ment of the spatial resolution due to geometric magnification

FIG. 15. Slice images of the mouse leg bearing FSa fibrosarcoma recon-
structed by use of FDK �left� and BPF �right� algorithms within the mid-
plane at z=0 �top� and an off-midplane at z=0.2 cm �bottom� from truncated
data. The display window is �0.2 cm−1, 2.5 cm−1�.

FIG. 16. Profiles along the white horizontal lines indicated in Fig. 15 for
reconstructed images �a� at the midplane and �b� at the off-midplane. Dotted
curves represent the results obtained from FDK algorithm and solid curves

from BPF algorithm.
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can be found elsewhere,23 although the data acquisition ge-
ometry and the image reconstruction algorithm are different
from the ones used in this work. Note that the data acquired
in the geometry described in Ref. 23 is not truly truncated
because the truncated projection rays in one view are always
compensated for from the conjugate view as shown in Fig.
18�a�. In comparison, the geometry used in this work pro-
duces truly truncated data, with respect to the entire object
not to the ROI, where some rays are not sampled by the
source and detector in any view as shown in Fig. 18�b�. The
image reconstruction algorithm used in Ref. 23 therefore
cannot be used for ROI image reconstruction as described
here. However, the results of Ref. 23 can be considered ef-
fective in this paper since the physics of spatial resolution
enhancement in both studies stem from the same origin of
geometric magnification.

The leg bearing the osteosarcoma is considered as the
ROI. Two projection data sets were prepared; 360 projection

FIG. 17. Profiles along the white horizontal lines indicated in Fig. 13 and in
Fig. 15 for reconstructed images by use of the BPF algorithm �a� at the
midplane and �b� at the off-midplane from nontruncated data and from trun-
cated data. Dotted curves represent the results obtained from truncated data
and solid curves from nontruncated data.

FIG. 18. Tomographic acquisitions with truncated data. The geometry in �a�
shows the system geometry used in the paper by Pan �Ref. 23�. In this
configuration, both “Ray A1” �dotted line� and “Ray A2” �dashed line� are
recorded in alternate views of the source and detector. In comparison, �b�
shows the geometry used in this work, where some rays �e.g., “Ray B1”� are

not sampled by the source and detector at any view.
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views spaced by 1° were obtained for both of them. One data
set was acquired at the radius of 37.1 cm for the circular
trajectory, and at 57.2 cm source-to-detector distance. The
other projection data set was acquired at the radius of
16.7 cm for the circular trajectory, and at 57.2 cm source-to-
detector distance. Therefore, the geometric magnification
factor increases from about 1.5 for the first data set to about
3.5 for the second, which is directly related to the increase of
data sampling density. As a result of this increase in geomet-
ric magnification, data truncation occurs in the second data
set, i.e., part of the whole mouse is not illuminated at all
projection angles. However, the ROI is always within the
FOV. Note the first data set is complete, i.e., no data trunca-
tion exists.

From the first projection data set which is complete, the
ROI image on a slice is reconstructed on 220�110 image
matrix whose pixel size is about 20�20 �m2 by use of the
FDK algorithm. The pixel size was chosen to be small
enough to effectively visualize the difference of the spatial
resolution of the images. Spatial resolution of an image can
be affected also by window function such as Hamming win-
dow in the filtering process of the FDK algorithm.26 We used
the Ram-Laks filter to incorporate high frequency compo-
nents without using any smoothing window. The recon-
structed image is displayed in Fig. 19�a� with the display
window of �0.1 cm−1, 5.0 cm−1�.

From the second data set which includes data truncation,
the ROI slice image which corresponds to the slice-image in
Fig. 19�a� is reconstructed on the image matrix of the same
size by the PI-line-based BPF algorithm and also by the FDK
algorithm. The reconstructed images are shown in Figs.
19�b� and 19�c�, respectively. One can see that more details
of the bony structure are reconstructed in 19�b� than in 19�a�
due to higher data sampling density from geometric magni-
fication. It is also observable that the image contrast in 19�c�
is severely degraded due to truncation artifacts while it is not
in 19�b�.

V. DISCUSSION

In this work, we have applied the PI-line-based BPF al-
gorithm to reconstructing ROI images from truncated cone-
beam data acquired with a microCT system. In particular, we
have qualitatively demonstrated how the proposed algo-
rithm’s capability of reconstructing ROI images from trun-
cated data can be exploited to potentially enhance image
spatial resolution. A uniform lucite phantom and a mouse
one of whose legs bears FSa fibrosarcoma have been in-
volved in the validation of the proposed method. The key
point of validation is to show that the PI-line-based BPF
algorithm can reconstruct ROI images, from truncated data,
with comparable image quality to that of the images recon-
structed from complete data. The ROI images reconstructed
by use of the FDK algorithm from truncated cone-beam data
suffer from truncation artifacts while the ROI images recon-
structed by the PI-line-based BPF algorithm from truncated

cone-beam data are free from truncation artifacts.
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Empirical correction algorithms, including the extrapola-
tion method,29 have been developed for compensating for
nonsevere truncations. It may be, however, difficult to cor-
rect for severe truncations that are encountered in ROI scans,
as described here for small animal imaging. The BPF algo-
rithm does not involve any correction procedures in recon-
structing accurate ROI images. As compared to the zoom-in
method utilizing two projection data sets, one of which is
obtained with a full FOV scan and the other obtained with a
limited FOV scan with a larger magnification, the proposed
ROI imaging approach may have several advantages. Scan
time can be reduced to, at least, less than half of that time
required by the zoom-in method. More importantly, one can
substantially reduce the overall x-ray exposure as compared
to that in the zoom-in method. Because the BPF algorithm

FIG. 19. Slice images of the mouse leg bearing osteosarcoma reconstructed
�a� by the FDK algorithm from the complete data set with lower geometric
magnification, �b� by the PI-line-based BPF algorithm from the truncated
data set with higher geometric magnification, and �c� by the FDK algorithm
from the truncated data set with higher geometric magnification. The display
window is �0.1 cm−1, 5.0 cm−1�.
requires data from x-ray illumination that covers only the
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ROI at the necessary views, one can further reduce the
imaging-radiation dose and scatters if appropriate x-ray illu-
mination collimation is used. However, the precise determi-
nation of x-ray exposure for each view should be conducted
through careful studies of the ROI image quality, which is
beyond the scope of this work.

Enhancement of spatial resolution due to geometric mag-
nification is limited by a finite size of the x-ray focal spot. As
noted by Kruger et al.,30 the spatial resolution of a digital
imaging system is maximized when the image of the focal
spot projected through a point in the object plane onto the
image plane just covers the width of two pixels, i.e., when
a�m−1�=2d. Here, a and d denote the focal spot size and the
detector pixel size, respectively, and m represents the geo-
metric magnification of the system. The microCT system
used in this work allows up to m=6 from this calculation
with a=20 �m and d=50 �m. In such a high magnification
case, the data truncation problem would become even more
severe, whereas the PI-line-based BPF algorithm for ROI
image reconstruction would be able to allow such a choice of
the magnification.

It should be pointed out that the ROI imaging problems
under study differ from the interior problem in which the
ROI contains no boundary of the subject. Other artifacts such
as beam hardening, scatter, and metal artifacts should be ap-
propriately corrected for reconstructing more accurate im-
ages, which will be pursued in our future studies.
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Purpose Cone-beam CT (CBCT) is be
oming in
reasingly popular in image-guided radiation therapy(IGRT) partly due to its relatively abundant image information and its 
onvenien
e in use. Target positioningis one of the most important steps in IGRT pro
edures, and one of the points of using CBCT is to determinethe day-to-day position of the target and surrounding normal tissues inside the patient [1℄. A

urate imageof the target is an essential ingredient in the task of target positioning. Moreover, in most IGRT pro
edures,it is desirable to have a

urate image of the target while sparing patient dose spe
i�
ally to the normaltissue outside the target. This issue be
omes more important when there are radiation sensitive tissues nearthe treatment target. A

urate, region-of-interest (ROI) imaging te
hnique in this regard is an important,prospe
tive 
andidate for routine CBCT in IGRT. An ROI imaging here is meant to imply that only theproje
tion data of the given ROI is taken for ea
h view, thereby redu
ing the dose to the outside of the ROI.Re
ently developed, the 
hord-based ba
kproje
tion-�ltration (BPF) algorithm is well known to produ
ea

urate images of 
ertain ROI's in general CBCT s
anning 
on�gurations. Data trun
ation artifa
ts, oftenappearing in the re
onstru
ted images by 
onventional algorithms, 
an be avoided by use of the 
hord-basedBPF algorithm in many ROI imaging tasks. However, some ROI imaging tasks su
h as interior problems
annot be addressed even by the 
hord-based BPF algorithm. But, it is likely that most imaging targetsare embedded inside the body, whi
h invokes the interior problem. Therefore, we propose an innovative,intensity-wighted region-of-interest (IWROI) imaging te
hnique to redu
e the imaging dose to the outside ofthe imaging target while maintaining the imaging problem solvable by the 
hord-based BPF algorithm. Inthis work, we fo
us on 
ir
ular CBCT whi
h is the dominant imaging modality employed in most radiationtherapy systems although the idea 
an be extended to any general s
anning 
on�gurations su
h as saddletraje
tory. We have 
ondu
ted numeri
al studies to validate our proposed method.Methods We would like to note that a 
ir
ular s
anning geometry does not satisfy data su�
ien
y 
on-dition, often referred to as the Tuy's 
ondition, for points lying o� the mid-plane. We have introdu
edvirtual 
hord 
on
ept to apply 
hord-based algorithms to re
onstru
t the images on the o�-mid-plane wherethe Tuy's 
ondition is not met [2℄. Comparable image quality was reported from the virtual 
hord-basedalgorithms to that obtained by a 
onventional Feldkamp-Davis-Kress (FDK) -type algorithm when there isno transverse proje
tion data trun
ation. When transversely trun
ated data were used, BPF-type virtual
hord-based algorithm was shown to perform ROI imaging at the level of the same image quality as whennontrun
ated data were used. FDK-type algorithm, however, produ
ed ROI images with typi
al trun
ationartifa
ts. This is the key feature of the 
hord-based BPF algorithm. Another important feature that makesthe IWROI feasible is the fa
t that the noise from the outer ROI does not propagate signi�
antly into theinner ROI due to noise transfer property of the Hilbert transform.The ROI in this task is divided into two subROI's. Higher dose is delivered to the inner ROI 
ontainingthe target, and lower dose is to the outer ROI. Ea
h proje
tion image, therefore, will have di�erent noise levelsin two regions: inner ROI proje
tion and outer ROI proje
tion. Fig. 1 shows a s
hemati
 of the proposeds
anning geometry. The prototype 
ir
ular CBCT s
anning geometry is assumed in this work where thesour
e and the dete
tor are �xed, and the obje
t is rotating around the axis. Outer ROI is determined bythe 
ollimator opening, whi
h is typi
ally limited by the dete
tor size. Inner ROI is determined by the �lteropening, whi
h is sele
ted to illuminate the target spe
i�
ally with higher beam intensity than that usedfor outer ROI. From the intensity variation of the x-ray beam, di�erent noise levels at inner and outer ROIregions are expe
ted. Therefore, in the numeri
al study, di�erent Gaussian noise levels were used in theproje
tion data for inner ROI and for outer ROI. Even though we only show an example of stati
 
ollimationand stati
 �ltration in this work, the IWROI te
hnique 
an be extended to more arbitrary shape of the ROIprovided that dynami
 
ollimation and �ltration are available.Results A uniform ellipsoid phantom was used as an imaging subje
t with three di�erent 
ombination ofthe noise levels in the inner and the outer ROI's. The noise level, or the standard deviation of a Gaussiannoise, of the inner ROI was �xed by 0.1 and those of the outer ROI were varied by 0.5,1.0, and 2.0. Numeri
alsimulation results are shown in Fig. 3. The pro�les along the mid-lines of the images are plotted in Fig.3(d). It 
an be observed that the outer ROI noise level rarely a�e
t the inner ROI noise level. Note alsothat the images, re
onstru
ted from trun
ated proje
tion data by the 
hord-based BPF algorithm, have notrun
ation artifa
ts. 1 49
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High intensity beam
Low intensity beam

Detector

X−ray source

Collimator Filter

ObjectFigure 1: S
hemati
 of the proposed, intensity-weighted ROI s
anning.
(c)

(b)

(a)

(d)Figure 2: Re
onstru
ted images of the uniform phantom with its inner ROI noise level of 0.1 and its outerROI noise level of (a) 0.5, (b) 1.0, and (
) 2.0. Display window is [0.9,1.1℄. The pro�les along the middle,horizontal lines in the images are plotted in (d). Solid line represents (a), dotted line (b), and dashed linerepresents (
).To 
ompare with the FDK algorithm, the Shepp-Logan phantom was used as an imaging obje
t andthe proje
tion data were prepared to have data trun
ation. As shown in Fig. 3, the image re
onstru
tedby FDK-type algorithm 
ontains typi
al trun
ation artifa
ts throughout the whole image: pixel values arein
reased and the amount of pixel value in�ation in
reases as it approa
hes the trun
ated boundary of theimage. The image re
onstru
ted by 
hord-based BPF algorithm, however, is free from trun
ation artifa
ts.New work The proposed te
hnique 
an be 
onsidered as an analogy of the intensity-modulated radiationtherapy (IMRT). As 
on
erns about the patient dose due to repeated CT s
anning be
ome serious, theproposed method 
an 
ontribute signi�
antly to redu
ing the patient dose. The intensity variation 
on
epthas been already used in diagnosti
 imaging resear
h in
luding Ref. [3℄, but their image re
onstru
tionmethod is soley based on FDK algorithm. Our work 
an be mu
h more �exibly applied to the ROI problemthat may have severe data trun
ation.Con
lusion An ROI CBCT with intensity-weighting te
hnique is presented. A

urate image informationof the target is required for IGRT, and it is desirable to redu
e dose delivered to the normal tissue surroundingthe target. Our proposed method 
an re
onstru
t the target image with high signal-to-noise ratio and thesurrounding tissue image with relatively low SNR. Data trun
ation artifa
ts 
an be avoided by using theproposed, 
hord-based BPF-type algorithm, and noise propagation from the normal tissue region to thetarget region is well-suppressed due to the property of Hilbert transform. The proposed algorithm is apromising te
hnique in CBCT for IGRT. Experiments are in progress.
2 50



(a) (b)Figure 3: Numeri
al images of the intensity-weighted ROI by (a) FDK and (b) BPF algorithms. Displaywindow is [0.95,1.1℄.Referen
es[1℄ D. A. Ja�ray, �Emergent te
hnologies for 3-dimensional image-guided radiation delivery,� Semin. Radiat.On
ol., vol. 15, pp. 208�216, 2005.[2℄ L. Yu, Y. Zou, E. Y. Sidky, and X. Pan, �Region of interest re
onstru
tion from trun
ated data in 
ir
ular
one-beam CT,� IEEE Trans. Med. Imag., vol. 25, pp. 869�881, 2006.[3℄ R. Chityala, K. R. Ho�mann, S. Rudin, and D. R. Bednarek, �Region of interest 
omputed tomography:Comparison with full �eld of view and trun
ated 
t for a human head phantom,� Pro
. SPIE, vol. 5745,pp. 583�590, 2005.
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(a) (b)Figure 1: (a) A prior image and (b) the shifted image. Two arrows indi
ate the internal stru
tures that havemoved.Purpose Cone-beam 
omputed tomography (CBCT) has been a
tively investigated and developed forproviding a

urate, timely images of the treatment target in image-guided radiation therapy (IGRT) [1℄.Espe
ially, the re
ently available kV 
one-beam imaging 
apability of a linear a

elerator system providesex
ellent soft-tissue 
ontrast, whi
h is an important bene�t in IGRT of su
h as prostate 
an
er. Redu
tionof the treatment margins owing to improved image quality of the target would in
rease the 
onformalityof dose distribution in a fra
tionated treatment where day-to-day, inter-fra
tion organ motion is present.However, radiation dose a

umulated to the patient due to daily CBCT before ea
h fra
tionated treatmentmay pose a 
hallenge in the patient's radiation safety. This motivated our work to develop a few-view CBCTfor IGRT, where few-view means a limited number of proje
tion views out of 360◦ in a 
ir
ular s
an.Re
ently, we have developed an iterative image re
onstru
tion algorithm based on total-variation (TV)minimization from in
omplete 
one-beam proje
tion data. In numeri
al studies with a variety of in
omplete
one-beam data sets in
luding trun
ated data, redu
ed s
an range, and sparse sampling, the developedalgorithm, whi
h is referred to as TV algorithm hereafter, showed an ex
ellent performan
e 
ompared withexisting algorithms su
h as algebrai
 re
onstru
tion te
hnique (ART) and expe
tation maximization (EM)[2℄. The TV algorithm begins in general with a uniform image as an initial guess, and goes through iterationsteps to minimize the image TV. In an IGRT, a patient usually undergoes a CT s
anning for treatmentplanning, whi
h 
an provide the referen
e image for image-guidan
e pro
edure. Therefore, in this work, wepropose a TV algorithm with a priori information in few-view CBCT for IGRT.Only preliminary numeri
al study has been made yet, and the feasibility of the proposed algorithm andthe future work will be dis
ussed in this paper.Methods In order to see the feasibility of the proposed algorithm, we have 
ondu
ted a numeri
al studyfor a 2-D 
ir
ular, fan-beam geometry in this work. A modi�ed 2-D Shepp-Logan phantom was used as animaging obje
t, and this phantom was used as an initial guess, i.e. planning-CT image. Two of the internal
omponents of the phantom were shifted. A series of few-view proje
tion data sets of the shifted phantomwere prepared, and fed into the TV algorithm with or without the prior information of the original phantomimage. Fig. 1 shows the original phantom image and the shifted phantom image emphasizing the 
hangeof the internal stru
tures. The proje
tion data sampling was made in an equiangular fashion in this work,whi
h is not a ne
essary 
ondition nevertheless.Results The re
onstru
ted images by TV algorithm with and without the prior information from di�erentnumber of proje
tion images are shown in Figs. 2-4. The images with the prior information are reasonablyre
onstru
ted even from 5-view data, where the images without prior appear to be
ome reasonable from20-view data. This numeri
al study 
on�rms the prior information 
an help redu
ing the required numberof views in TV algorithm.New work For patient positioning and target lo
alization in IGRT, portal images or orthogonal radio-graphi
 proje
tion images have been utilized. Digitally-re
onstru
ted-radiographs (DRRs) have been pre-pared from the planning CT image, and image registration or image mat
hing between DRR and proje
tionimages have been performed. In many 
ases, hard tissue su
h as bony stru
ture or implants have been 
hosen1 53



(a) (b)Figure 2: Re
onstru
ted images from 5-view data (a) with prior image and (b) without prior image.

(a) (b)Figure 3: Re
onstru
ted images from 10-view data (a) with prior image and (b) without prior image.

(a) (b)Figure 4: Re
onstru
ted images from 20-view data (a) with prior image and (b) without prior image.
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as mat
hing targets be
ause they are relatively immobile and have higher image 
ontrast. However, thesemethods 
annot 
ompensate for the internal motion and/or shape 
hange of the soft-tissue su
h as prostatebetween day-to-day treatments. Even if the soft-tissue 
an be registered and lo
alized 
orre
tly, the treat-ment plan 
annot be replanned based on these radiographi
 proje
tion images. Sin
e our proposed algorithm
an re
onstru
t 3D volume images of the target, treatment replanning based on the newly re
onstru
ted CTimages be
omes possible.Con
lusion The proposed method su

essfully re
onstru
ted the phantom image from few-view proje
tiondata sets with a priori image. The results are preliminary and more work needs to be done for validationand for potential appli
ations of the proposed method. Cone-beam proje
tion data have to be used and there
onstru
ted images by the proposed method from 
one-beam data have to be evaluated.In addition, we may still need an image registration pro
edure before running our TV algorithm sin
ethe algorithm requires the initial guess, or planning CT image, be in the same 
oordinate with the CBCTsystem. In this 
ontext, we are not negating the existing methods used in patient positioning and targetlo
alization, but instead reinfor
ing them with the advan
ed fun
tion of volumetri
 image re
onstru
tion.It is remained for our future work to develop an image registration pro
ess from the few-view data beforere
onstru
ting the volumetri
 image.Referen
es[1℄ D. A. Ja�ray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, �Flat-panel 
one-beam 
omputedtomography for image-guided radiation therapy,� Int. J. Radiat. On
ol. Biol. Phys., vol. 53, pp. 1337�1349, 2002.[2℄ E. Y. Sidky, C. M. Kao, and X. Pan, �A

urate image re
onstru
tion from few-views and limited-angledata in divergent-beam CT,� J. X-Ray S
i. Te
h., vol. 14, pp. 119�139, 2006.
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